

Worldwide leader in Factory **Automation and Robotics**

FANUC Japan Headquarters

FANUC Monthly Production Capacity

(Status November 2005)

Robots	500
--------	------------

Robomachines 1600

> CNC 16000

> Servo Motors 65000

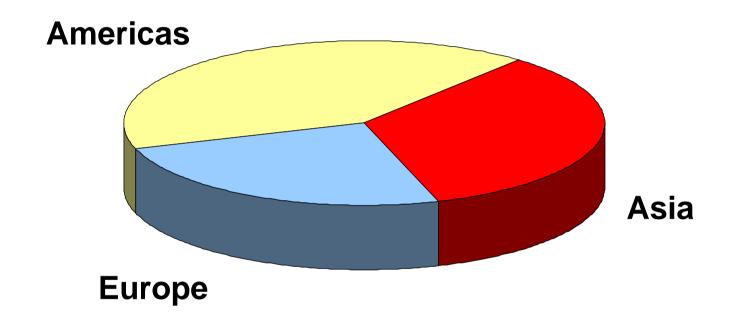
> Servo motor sensors 75000

Successful Global Player

FANUC Market Shares (2004)

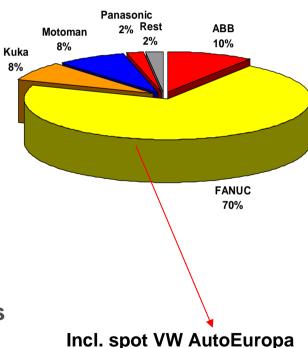
> CNC worldwide: 63%

➤ Robot worldwide: 27%



Unit Volume by Region

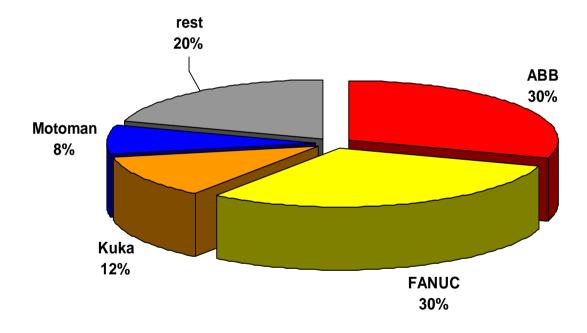
Europe is the fasted growing region for FANUC Robotics


Total Market Size and Market Share

- **Total Market Size 2006**
 - Spain 2017 units
 - Portugal 259 units
- FRIB Share in Spain

FRIB Share in Portugal

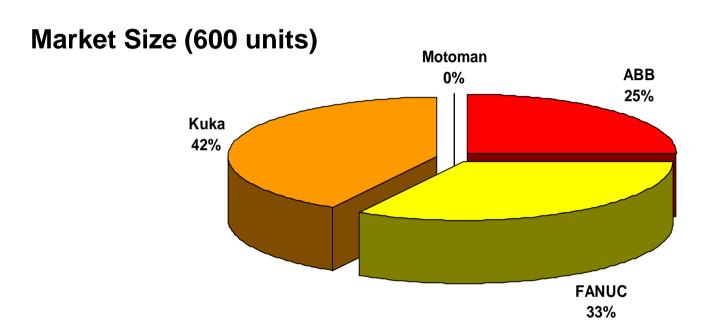
- Total Installed base Spain: 4500 units
- Total Installed base Portugal: 1000 units


Base Business Market Size and

Share

Base Business Market: FRIB and Competitor Share

Market Size (1600 units)



ABS Market: FRIB and Competitor Share

FANUC & Kuka dominate in ABS

What makes us successful?

Great Employees!

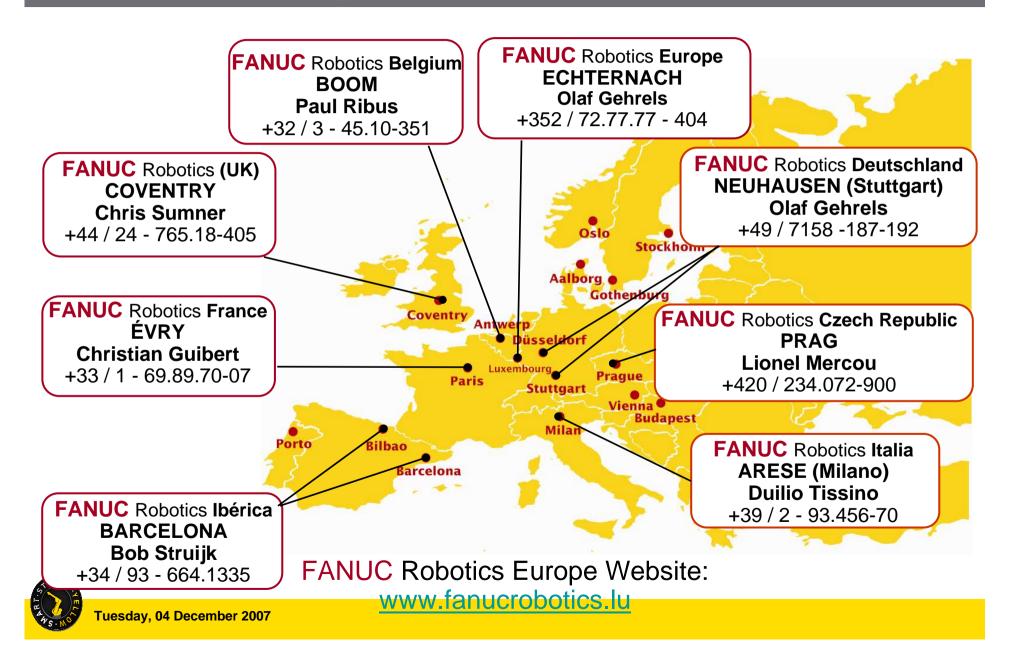
Great Customers!

Our partners appreciate that

- We develop close partnerships with our customers
- We never compete with our partners
- We support our partners to develop new sales opportunities

Our customers acknowledge FANUC's strength in:

- Product quality
- Product range
- Reliability



FR Europe Subsidiaries

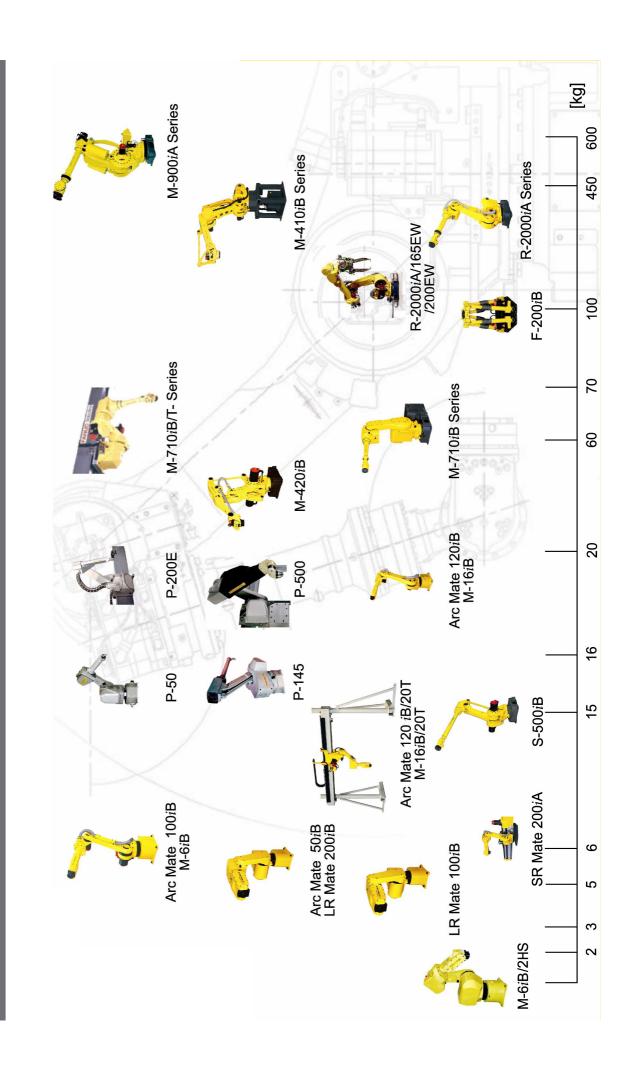
>> FRIB Territory Overview

Automotive Installed Base : FRIB

More than 1600 units installed in Automotive

Robotics worldwide

FANUC Robots worldwide Financial Highlights


➤ Unit Booking 2004 15,900 Robots

➤ Sales Revenue \$1.44 Billion Financial year 2005

> Installed Base (Jan. 2006) >150,000 Robots

Wide range of applications

Arc welding

Cut, grind, debur, polish

Palletizing, packaging

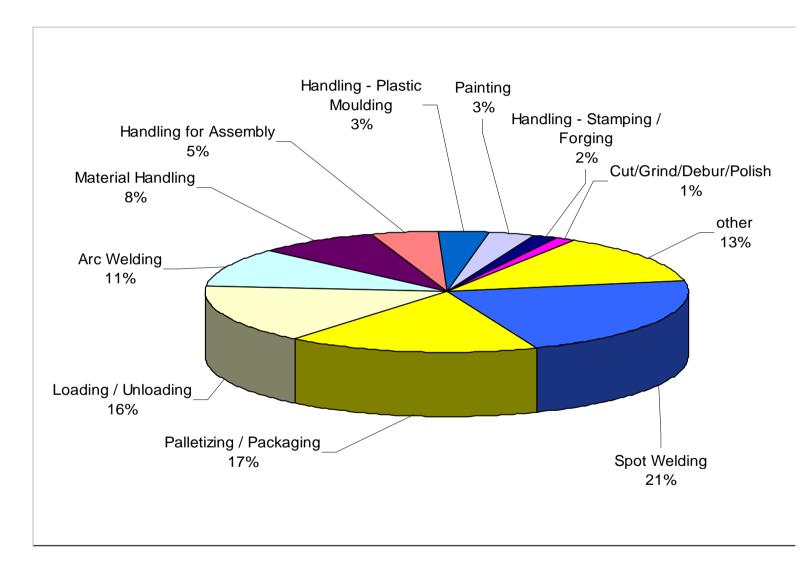
Spot welding

Handling

Loading

Handling, deburring

Loading


Painting

Unit Volume by Application (2005)

Good Cooperation

- Automation from a single source
- Compatible components with identical interface
- Common Networking and Diagnostic Tools

Why Buy A Robot?

Automation Drivers

Higher asset utilization

- Robots improve productivity of expensive production lines by ensuring that
- manufacturing operations move at a
- constant pace with minimal machine
- time

Reduced labor costs

- Robots reduce direct manufacturing labor needs and improve labor deployment Improved ergonomics and worker safety
- Robots minimize repetitive motion injuries and exposure to dangerous machinery

Higher quality and lower scrap

Robots provide higher quality and yield because of more controllable, predictable and repeatable process consistencies

Robot Myths and Reality Checks

Myth 1: Robots will eliminate my production labor costs

■ Reality: robots are not panaceas; there will always be some jobs for which people are better than robots

Myth 2: Robots are expensive to set up and maintain

Reality: as with personal computers, prices have declined while ease of use and performance have improved

Myth 3: Only high production runs can justify robot costs

■ Reality: robots can perform different tasks for different parts

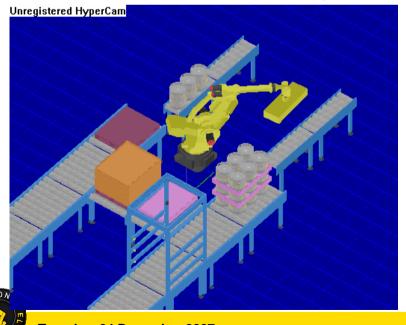
Myth 4: Outside of university labs, only the big automakers use robots

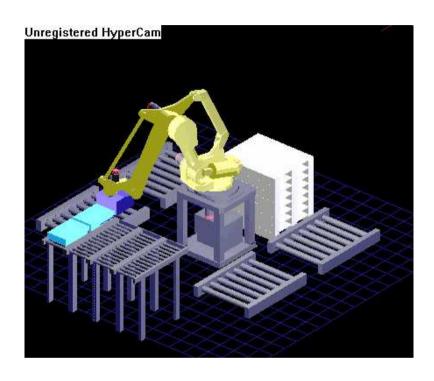
- Reality: robots have been in factories since 1962 and are a mature technology
- Reality: companies with < 500 employees now have the highest robot adoption rate

Alternatives to Robotics

Simple relative ranking; more stars is better

	People	Hard Automation	Robots
			(a.k.a. "Flexible Automation")
Flexibility	**	*	**
Initial cost	***	**	**
Machine utilization	\star	**	**
Obsolescence	$\star\star\star$	*	*
Operating costs		***	**
Process consistency	\bigstar	**	$\star\star\star$
Redeployability	$\star\star\star$	*	**
Throughput	\bigstar	***	***
Time to production	$\star\star\star$	*	**
Uptime/reliability	\bigstar	**	$\star\star\star$
Value (total contribution to bottom line)	You decide!	*	***





Workcell Validation with Roboguide

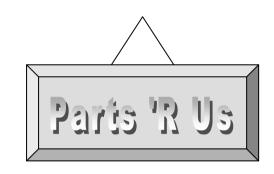
- Validate justification numbers for a workcell on a PC before ever turning a screw in the "real" world
- Import actual machine and part drawings for greater relevance
- Perform "what-if" analyses

- Optimize equipment layout by providing extremely accurate cycle time, reach, duty cycle, and collision predictions
- Transfer programs to real robots

Other Considerations

How Will Robots Affect Your...

- Productivity and throughput?
- Rework/scrap costs?
- The number of customer returns/rejects?
- Part quality/consistency?
- Employee ergonomics?
- Utilization of plant floor space per unit produced?
- Changeover times?


- Ramp-up time to volume production?
- Uptime of mold machines? Bottlenecks?
- Employee training?
- Employee turnover?
- Employees' acceptance of new technologies?
- Overall manufacturing strategy?

"Robots performing one task is great...so what <u>else</u> can you do for me?"

A key to justifying robot automation is using the robots' inherent flexibility to perform multiple ancillary operations for little or no incremental cost.

Broad Range of Applications

MATERIAL HANDLING	MATERIAL PROCESSING
» Assembly	» Deflashing/Trimming
» In-Process Part Transfer	» Deburring
» Machine Tending	» Dispensing
» Packaging	» Inspection/Measurement
» Packing	» Labeling/Reading
» Palletizing	» Painting
» Sorting/Kitting	» Powder Coating
	» Routering/Drilling
	» Scoring
	» Welding (Arc, Spot, Laser)

FANUC Robotics

- **Robot Definition**
- Automation Drivers
- Myths and Realities
- Alternatives to Robotics
- Tax Incentives
- Payback and ROI
- Workcell Validation
- Range of Applications
- Application Cases

Q and A

Tuesday, 04 December 200

What is palletizing?

Typically "End-of-line" function

Usually involves positioning of product on a carrier (euro-pallet, chep-pallet, xx-pallet)

Robot can also handle pallet, tier sheet

Any kind of product

Carton box, crates, bags, barrels, loose product.

Product with/without plastic foil wrap

Robot positions product in pattern

Example 1

M-410i series robot

Safety fence

Gripper, overhead vacuum

Carton box

Pattern

Euro pallet 800x1200

End of line conveyor

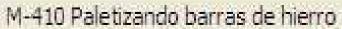
Example 2

►M-410i series robot

Bag gripper + pallet hook

Paper bag

pattern



Example 3: concrete blocks

ing grippers

M-410i series, palletsing robot

M-420i series, palletising/packing robot

R-2000i series, general 6 axes robot

..M-16i series, general 6 axes robot

How to determine cell

What to take into account

How many infeeds, how many pallets

1st. Payload (inertia) **→2nd. Cycle time of cell**

Tier sheet y/n?

Bottom sheet y/n?

Pick pallet y/n? if yes, how many?

Type of gripper, how many products?

General lay-out

Robot vs. traditional palletiser

- ++ robot is more flexible (pattern, product, lay out)
- ++ robot has less maintenance/problems
- ++ robot uses less floor space
- -- robot has lower capacity

Why robot, advantages for customer

Flexible production

Higher output/production possible

Change of product/packaging/etc

Regulations on lifting, chemical exposures

Reduction of work force

Constant quality of work / palletising

Machine load unload

Robots for machine load and unload

Vision systems

Robot software options