

JAI Congress 2007, VIGO

Benefits of modern PLC technology for industrial applications

November 30th, 2007

Vigo, JAI Congress 2007

University of Applied Science
Department of Electrical Engineering
Goebenstr. 40
D-66117 Saarbrücken

Curriculum Vitae

Data:

Name: Benedikt Faupel

Education:

www.rwth-aachen.de

1981-1987 Study of Electrical Engineering at the University of

Aachen / Qualification Graduate (Diploma)

1987-1992 Member of Laboratory of Machine Tools and

Production Technology at the

University of Aachen (WZL)

Qualification: PhD

Research Work: Expert systems / Technical Diagnosis

Curriculum Vitae

Since 2002 HTW, University of Applied Science

www.htw-saarland.de Department of Electrical Engineering

1992-1997 SICOWA Process technology for building materials

Leader of department of Electrical, Control- and

Automation Technoloy

1998-2002 Otto-Junker GmbH – Heat Treatment Technology

Leader of Process Technology

Curriculum Vitae / Career as Professor

Since 2002

www.htw-saarland.de

HTW, University of Applied Science Department of Electrical Engineering

Leader Laboratory Process Automation & Control Technology

Research: Automation with PLC-Technology

Use of Simulation Tools

Eduacation: Control Loop Technology

Process Automation

Simulation Technology

Organization: Member/Leader of ECTS-Team

Research Topic – Use of Simulation Tools

Matlab/Simulink

- Control Loop Technology
- Process Identification
- Fuzzy Control
- State control technology
- Digital Control Technology

New: LabVIEW

Measurement & Control Loop Application

Research Topic – Automation with PLC

Training in PLC-Systems (Siemens)

- Modern Programmable Languages (S7-HiGraph, SL, CFC, SIMIT)
- Communication technology (ASI, Profibus DP, Hart, Ethernet)
- Safety Concepts (ProfiSafe)
- Automation and Drive Control
- Process Control and Controller Design
- Visualization with WinCC-flexible

Realized Industrial Projects

- Process Control "Heat-Treatment-Application" (2007)
- Automation of a Lab-Press System (2007)
- Drive Control "Flying Saw-Application" (2006)
- Process Optimization "Brewery Karlsbräu Saverne" (2005-2007)
- Simulation Testsystem "Dillinger Hütte" (2007)

Process Control Application

Education

- Operation of controller design
- Process-Modelling
- State of the Art
- View on industrial approaches

Economics

- Low costs for realization
- Short implementation time
- Staff training

Lab application

Industrial application

Technical Requirements

- Process-Identification
- Controller Design
- Process-Optimization

Technical Requirements

- Substitution / Modernization
- Process-Optimization
- Standard Function Blocks
- Quality Management

Process Control Application

Lab application

Industrial application

Lab application

Task: Level Control Design

- Realization of PLC-Solution
- Experience with different Controller Tools
- Experience with signal matching sensors/actuators
- Finding of optimized controller settings
- Data Exchange / Communication
- Process-Optimization
- Vizualization

Selection guide for controller devices

Task	Process Control device for temperature, flow level and pressure control			
Require- ments	Simple	Middle	High permformance	
Realization	Software	Software	Software	HW-IO-Device
Product label	PID Control	Standard PID-Control	Modular PID-Control	FM 355C, FM 355S FM 455C, FM 455S
Type	Flexible integrated in SIMATIC S7-300, S7-400, C7, ET200			
Features	continuous controller; step-controller; pulse-controller			
Functions	 Basic control loop functions 	Basix & specialized control loop functions		 Specialized control loop functions Active in case of stop or CPU failure
	Comfortable online optimization for all controllers using PID-Self Tuner			
Function blocks	FB 41 FB 42 FB 43	FB 1 FB 2 FC 1	27 standard function blocks	K-controller: FM 3550/4550 S-controller: FM3558/4558 Pulse-controller: FM 3558/4558
Controller Structure	Integrated functions Flexible settings of parameters possible		Free configur- able: Function- blocks can be combined and connected	Already defined; adapted configuration of control structure and processing functions
Added tools	Tabulated overview on parameter settings	Graphic tools with comfortable masks to adapt parameter settings; online changes directly active and documentated		

November 2007 version 1.4

Wellenreuther (FB70)

19:04:58 30.10.2007

Offsetwerte und Anpassungen:

Offset bei positiver Führungsgröße:

Offsetwert: 29,68 Hz:

Offset bei negativer Führungsgröße:

Offsetwert: 6,10 Hz:

Zusätzl. Offset bei Führungsgröße < 30%:

Offsetwert: 1,53 Hz:

Startbild Detailansicht Handbetrieb Detailansicht Standard PID Detailansicht Wellenreuther Detailansicht Prozessregler

Meldungen

Runtime Verlassen

Wellenreuther (FB70)

19:09:38 30.10.2007

Offsetwerte und Anpassungen:

Offset bei positiver Führungsgröße:

Offsetwert: 29,68 Hz:

Offset bei negativer Führungsgröße:

Offsetwert: 6,10 Hz:

Zusätzl. Offset bei Führungsgröße < 30%:

Offsetwert: 1,53 Hz:

Startbild

Detailansicht Handbetrieb Detailansicht Standard PID

Regeldiffernez

Detailansicht Wellenreuther Detailansicht Prozessregler

Meld_WR_Regeldiff

Meldungen

-1,654045 30,10,2007 19:09:38:281

Runtime Verlassen

Standard PID

19:18:30 30.10.2007

Reaeldif. (e):

KP: 18

TD: 0

-0,3 Stellaröße (v):

D

Reglereinstellungen (Standard PID):

ms TI: 1700 ms

Sollwert (w): 50,0 Istwert (x):

60,3

31,5

Offsetwerte und Anpassungen:

Bearenzuna des Stellwertes:

Anpassung des Stellwertes:

obere Begrenzung: 200

30

untere Begrenzung: -50

Stellwertfaktor:

0,10 Stellwertoffset:

Startbild

Detailansicht Handbetrieb Detailansicht Standard PID

Detailansicht Wellenreuther Detailansicht Prozessrealer

Meldungen

Runtime Verlassen

Limitation manipulated value

y_{PID} -> y_{PID.limited}

positive change: +200 % negative change: -50 %

Matching

y_{PID,limited} -> f[Hz], frequency

factor: 0.1 30 offset:

$$f[Hz] = y_{PID.limited} \cdot factor + offset$$

$$f_{\text{max}} = 200 \cdot 0.1 + 30 = 50[Hz]$$

$$f_{\text{min}} = -50 \cdot 0.1 + 30 = 25[Hz]$$

Industrial application (2007)

Process Control Design for Heat treatment process (3 Chambers)

Job list:

- PLC-Substitution
- New design of Temperature and Moisture Control
- Process-Optimization
- Vizualization
- Implementation
- Test

Process

version 1.4

Process Equipment

Control Loop Design

Process value: temperature, PT100

moisture measuremet device

Control actuators: valve, powered, no position feedback,

integrative actuator

airflap, powered, no position feedback

integrative actuator

Medium: heating: heated water

Medium: moisture: outside air / inside air

Controller Design

Adapted Controller

- controller FB 42Step-Controller
- Integrated PI-controller
- Pulse-Modulation

Former Control Loop Quality

temperature process value green: temperature desired value red: blue: moisture process value

moisture desired value lilac:

yellow: valve position (temperature)

Analysis of controller design:

- No function of moisture control
- High switching rate of actuator (valve for temperature contol)
- Not optimized settings
- No monitoring of temperature limits
- Not complete visualization

New Control Loop Quality

red:
blue:
lilac:
cyan:
yellow:

temperature process value moisture desired value moisture process value valve position (temperature)

temperature desired value

black:

position airflap

Analysis of controller design:

- active moisture control
- No oscillation of acuatores
- Optimized settings
- Monitoring of process limits

November 2007 version 1.4

slide 1.28

© Prof. Dr.-Ing. Benedikt Faupel

Drive Control Application (1)

Drive Control Application (1)

Drive Control Application (1)

Drive Control Application (2)

Drive Control Application (2)

November 2007 version 1.4

Projects of HTW-Students

Hoffmann Carsten: Concept and Realization of a PLC-monitoring system to

detect manipulation in production plants

Bui, Y-Khoa & Concept and Realizsation of Drive Control Lab

Fardilla Mohd Zaihidee: by using Soft-PLC-System

• Schwarz Christian: Concept, Realization and Integration of a RFID-System in a

gearing production plant

Huwig Gunnar: Concept and Design of Heat-Treatment Control Device

in a gypsum production plant

Koundi & Modelling and Simulation of Material Handling System

Chimbo: in a steel production plant with SIMIT

Brosta, Marx: Control of a test station in a MPS-Training Device

• Scipio, Holger: Concept of Profi-Safe Test Lab

Contact

<u>Personell Data:</u> Name: Prof. Dr.-Ing. Benedikt Faupel

mail:

fon: ++49 681 - 5867 - 261 / -214

mobile: ++49 172 - 930 6547

faupel@htw-saarland.de

Questions?

November 2007 version 1.4