Global localization based on omnivision sensor for a guide mobile robot

IX Workshop de Agentes Físicos Septiembre 2008 Vigo

C. Gamallo¹ C.V. Regueiro² M. Mucientes¹ P. Quintía¹

¹Intelligent Systems Group, Dept. of Electronics and Computer Science, University of Santiago de Compostela (Spain).

²Computer Architecture Group, Department of Electronic and Systems, University of A Coruña (Spain).

Outline

- **1** INTRODUCTION
- **2** ARTIFICIAL VISION SYSTEM
 - Landmark Detection
 - Camera Model
 - Ceiling Map Projection
- **3** GLOBAL LOCALIZATION
 - Merit function
 - Minimizing process
 - Graphical example
- 4 EXPERIMENTAL VALIDATION
 - Domus Museum
 - Results
- 5 CONCLUSIONS AND FUTURE WORK

Introduction

Context

- Robot position
 - Required for most of the tasks
 - Reliability, robustness, run in real time
- Domus Museum
 - Large, dynamic and crowded environment
 - Modifications are not allowed
 - Irregular floor

Our Proposal

- Omnidirectional camera pointing to ceil
- Maps of natural Landmarks: spotlights
- Global localization algorithm based on a particle filter

Introduction

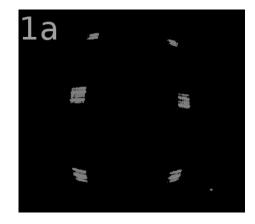
Context

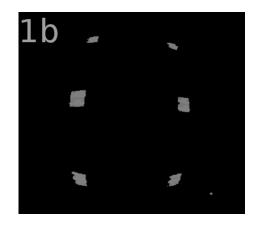
- Robot position
 - Required for most of the tasks
 - Reliability, robustness, run in real time
- Domus Museum
 - Large, dynamic and crowded environment
 - Modifications are not allowed
 - Irregular floor

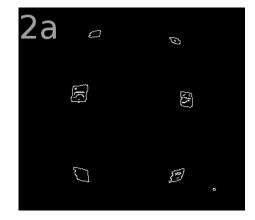
Our Proposal

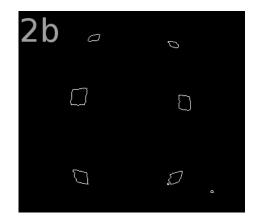
- Omnidirectional camera pointing to ceil
- Maps of natural Landmarks: spotlights
- Global localization algorithm based on a particle filter

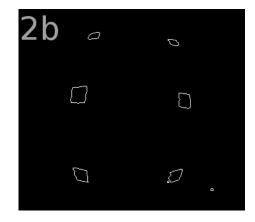
Outline

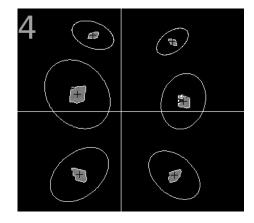

- **I** INTRODUCTION
- **2** ARTIFICIAL VISION SYSTEM
 - Landmark Detection
 - Camera Model
 - Ceiling Map Projection
- **3** GLOBAL LOCALIZATION
 - Merit function
 - Minimizing process
 - Graphical example
- **4** EXPERIMENTAL VALIDATION
 - Domus Museum
 - Results
- 5 CONCLUSIONS AND FUTURE WORK

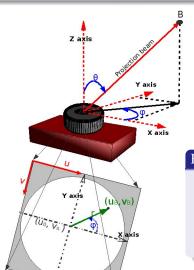

- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- 2 Segmentation:
 - a Edge detection
 - b Contour extraction
- **B** Features extraction
- Selected landmarks


- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- 2 Segmentation
 - a Edge detection
 - b Contour extraction
- Features extraction
- Selected landmarks


- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- 2 Segmentation:
 - a Edge detection
 - b Contour extraction
- 3 Features extraction
- Selected landmarks

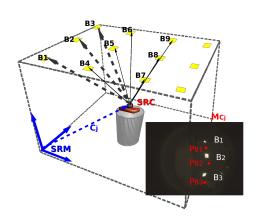

- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- **2** Segmentation:
 - a Edge detection
 - b Contour extraction
- 3 Features extraction
- 4 Selected landmarks


- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- **2** Segmentation:
 - a Edge detection
 - b Contour extraction
- 3 Features extraction
- 4 Selected landmarks


- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- **2** Segmentation:
 - a Edge detection
 - b Contour extraction
- 3 Features extraction
- 4 Selected landmarks

- Infrared baseband filter
- Preprocessing phase:
 - a Thresholding
 - b Closure operator
- **2** Segmentation:
 - a Edge detection
 - b Contour extraction
- 3 Features extraction
- 4 Selected landmarks

Camera Model



- Transform 3D scene into 2D image
- Pin-Hole Mode: $F.O.V \ll 180^{\circ}$
- Pajda-Bakstein Model: $F.O.V \simeq 180^0$

Equations

$$r = a * \tan \frac{\theta}{b} + c * \sin \frac{\theta}{d}$$
 (1)

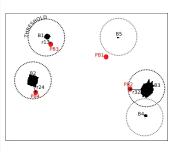
Ceiling Map Projection

Landmark Projection

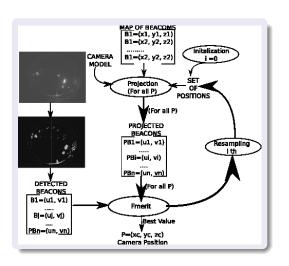
$$\mathbf{B}_i^P = R_P \cdot \mathbf{B}_i^W - \mathbf{P}$$

$$Proj(B_i^P) = (u_{B_i^P}, v_{B_i^P})$$

Map(P) for one position P


$$Map(P) = \{Proj(B_i^P)\}$$

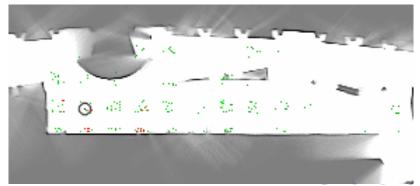
Outline


- **I** INTRODUCTION
- 2 ARTIFICIAL VISION SYSTEM
 - Landmark Detection
 - Camera Model
 - Ceiling Map Projection
- **3** GLOBAL LOCALIZATION
 - Merit function
 - Minimizing process
 - Graphical example
- 4 EXPERIMENTAL VALIDATION
 - Domus Museum
 - Results
- 5 CONCLUSIONS AND FUTURE WORK

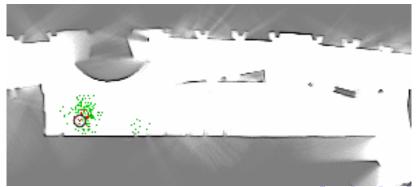
Merit Function

```
M(P) = \frac{1}{N_P} * \varepsilon_P
Map(P)
for all Beacons i in the image do
    for all Beacons i in Map(P) do
        \varepsilon(B_{i}^{P}) = \|Proj(B_{i}^{P}) - Detected(B_{i})\|
        if \varepsilon(B_{ij}^P) < THRESHOLD then
            \varepsilon_P = \varepsilon_P + \varepsilon (B^P_{ii})
            N_P = N_P + 1
        else
            \varepsilon_P = \varepsilon_P + THRESHOLD
        end if
    end for
end for
```


- N(P) = 3
- $\epsilon_P = r13 + r24 + r32 + TH.$

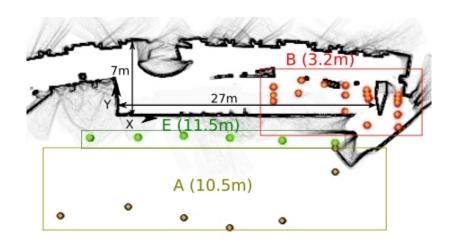


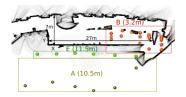
- Set of particles
 - Initially: uniformly distributed
- Resample
 - Select the best ones
 - New particles
 - Gaussian noise
- Repetitive

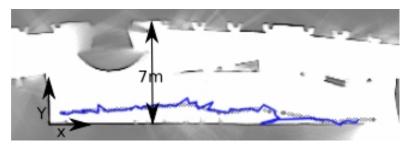

- Intialization $[2m/2^o]$
- $\sigma_{x,y} = 0.50m$ and $\sigma_{\theta} = 5^{\circ}$
- Top 200 positions
- 6 Iterations: 0, 1, 3, 5

- Intialization $[2m/2^o]$
- $\sigma_{x,y} = 0.50m$ and $\sigma_{\theta} = 5^{\circ}$
- Top 200 positions
- 6 Iterations: 0, 1, 3, 5

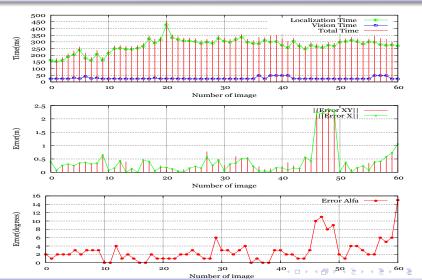
- Intialization $[2m/2^o]$
- $\sigma_{x,y} = 0.50m$ and $\sigma_{\theta} = 5^{\circ}$
- Top 200 positions
- 6 Iterations: 0, 1, 3, 5


- Intialization $[2m/2^o]$
- $\sigma_{x,y} = 0.50m$ and $\sigma_{\theta} = 5^{\circ}$
- Top 200 positions
- 6 Iterations: 0, 1, 3, 5

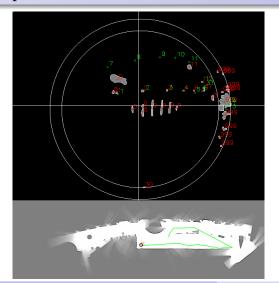

Outline


- **I** INTRODUCTION
- 2 ARTIFICIAL VISION SYSTEM
 - Landmark Detection
 - Camera Model
 - Ceiling Map Projection
- **3** GLOBAL LOCALIZATION
 - Merit function
 - Minimizing process
 - Graphical example
- **4** EXPERIMENTAL VALIDATION
 - Domus Museum
 - Results
- 5 CONCLUSIONS AND FUTURE WORK

Experiments on the Domus Museum



Experiments on the Domus Museum



Results on the Domus Museum:

Experiments on the Domus Museum

Outline

- **I** INTRODUCTION
- 2 ARTIFICIAL VISION SYSTEM
 - Landmark Detection
 - Camera Model
 - Ceiling Map Projection
- **3** GLOBAL LOCALIZATION
 - Merit function
 - Minimizing process
 - Graphical example
- 4 EXPERIMENTAL VALIDATION
 - Domus Museum
 - Results
- **5** CONCLUSIONS AND FUTURE WORK

Conclusions

Locate a guide robot at the Domus museum using omnivision

- Robust landmark Detection
- Based on a Merit Function
- Crowded and medium-large environment $(168m^2)$.
- Only 31 spotligths

	$E_{mean} xy $	$E_{max} xy $	α_{mean}	α_{max}	Tiempo(ms)
GLOBAL	0.53	2.42	15	3	300
MCL _{TAROS2008}	0.41	1.07	20	3	40

Future work

- Global Localization based on MCL
- Simultaneous localization and mapping (*SLAM*)

Global localization based on omnivision sensor for a guide mobile robot

IX Workshop de Agentes Físicos Septiembre 2008 Vigo

C. Gamallo¹ C.V. Regueiro² M. Mucientes¹ P. Quintía¹

¹Intelligent Systems Group, Dept. of Electronics and Computer Science, University of Santiago de Compostela (Spain).

²Computer Architecture Group, Department of Electronic and Systems, University of A Coruña (Spain).

