Large Scale Environment Partitioning in Mobile Robotics Recognition Tasks

Boyan Bonev, Miguel Cazorla

{boyan, miguel}@dccia.ua.es

Robot Vision Group
Department of Computer Science and Artificial Intelligence
University of Alicante

April 27th, 2007

Outline

- Introduction
 - Localization and vision
 - Initial approach
 - Partitioning approach
- Method
 - Partitioning
 - Localization in each partition
 - Localization in the whole domain
- 3 Experiments
- 4 Conclusions

Outline

- Introduction
 - Localization and vision
 - Initial approach
 - Partitioning approach
- 2 Method
 - Partitioning
 - Localization in each partition
 - Localization in the whole domain
- 3 Experiments
- Conclusions

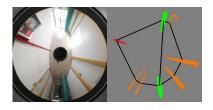
Localization

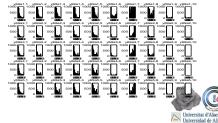
- Mobile robots
- Sensors + Maps
- Localization

Vision-based localization

Environments

- Ad-hoc
- Natural
 - Indoor
 - Outdoor





Appearance based visual recognition

Visual recognition approaches

- Structural-description
 - Structure from high level features
- Appearance-based
 - Images or low level features

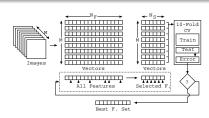
Omnidirectional images

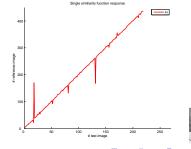
Omnidirectional images

- Local views with 360° visibility
- Independence of the direction of the route.
- Convenient representation for rotation-invariant recognition

7/35

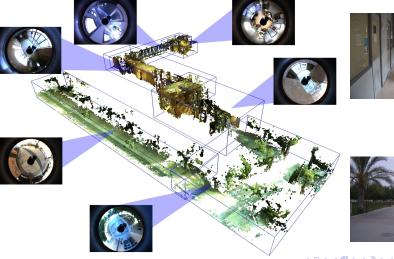
Omnidirectional images


Feature selection approach

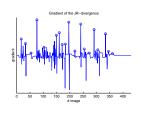

Low level filters

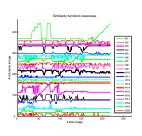
- Nitzberg
- Canny, Gradient
- Color Filters

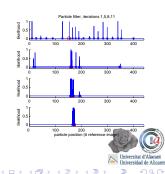
Histograms comparison


 2,4, and 12 bins discretization

Large environments







Approach

- Unsupervised partitioning of the environment
- Localization in each partition → multiple hypotheses
- MCL to select a single hypothesis

Outline

- Introduction
 - Localization and vision
 - Initial approach
 - Partitioning approach
- Method
 - Partitioning
 - Localization in each partition
 - Localization in the whole domain
- 3 Experiments
- 4 Conclusions

Sequence of images

Sequence of images

Sequence of images

Environment Partitioning in Recognition Tasks

WAF 2008

Divide the problem

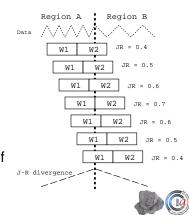
How to divide the problem?

- Try all possible partitions
- Clustering algorithms

● Look for local variations in the information

Jensen-Rényi divergence

Information-theoretic divergence measures


- entropy based
- unfeasible for multidimensional data

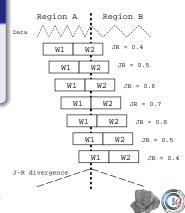
Jensen-Rényi divergence

- α-entropy based
- feasible estimation in high-dimensional spaces (Hero and Michel, 2002)

J-R divergence applications

- may be defined between any number of probability distributions
- may be used to detect "edges" with a sliding window

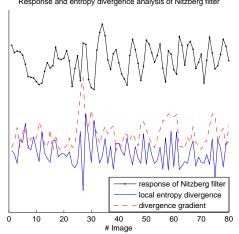
17 / 35

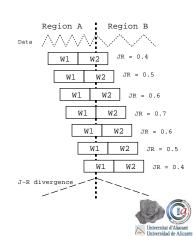

Jensen-Rényi divergence

J-R divergence simplified for two equally weighted distributions

$$JR_{\alpha}(p_1, p_2) =$$
 $= H_{\alpha}\left(\frac{p_1 + p_2}{2}\right) - \frac{H_{\alpha}(p_1) + H_{\alpha}(p_2)}{2},$

where

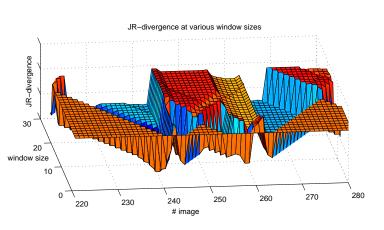

- Rényi entropy H_{α} is estimated with Hero and Michel's method (based on minimal spanning trees)
- complexity depending on the number of samples O(N log N)



Environment Partitioning in Recognition Tasks

Jensen-Rényi divergence

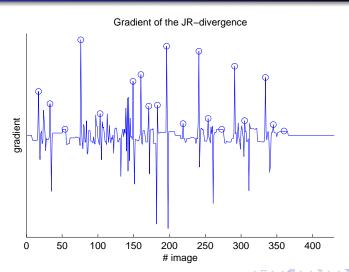
Response and entropy divergence analysis of Nitzberg filter



Partitioning

ocalization in each partition ocalization in the whole domair

Multiscale Jensen-Rényi divergence



#273

Resulting partitions

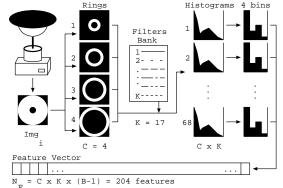
21 / 35

Partitioning

ocalization in each partition
ocalization in the whole domain

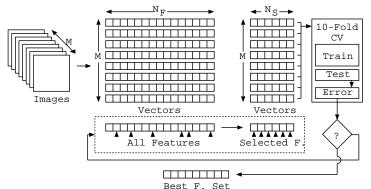
Resulting partitions

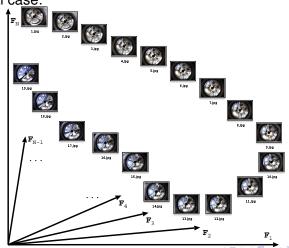
Feature extraction

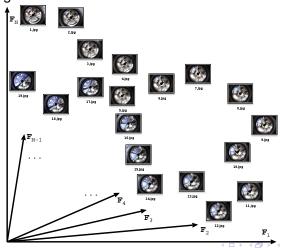


Extraction of global features

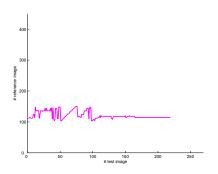
Training



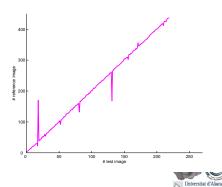

Selection of features


NNs in the feature space

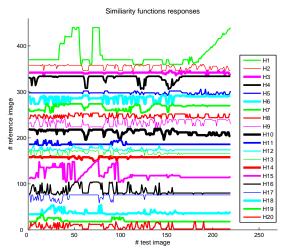
The ideal case:


NNs in the feature space

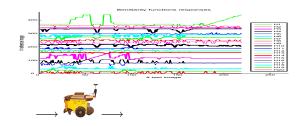
The wrong case:



Response on the test set


 Classifier trained for images 104 – 148

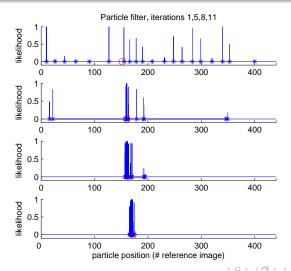
 Classifier trained for images 001 – 440


Several localization hypotheses

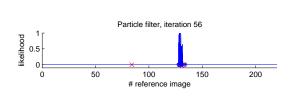
Several localization hypotheses

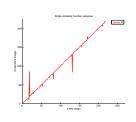
Monte Carlo Localization, given:

- A motion model
- A likelihood function for a given position


Outline

- Introduction
 - Localization and vision
 - Initial approach
 - Partitioning approach
- Method
 - Partitioning
 - Localization in each partition
 - Localization in the whole domain
- 3 Experiments
- 4 Conclusions


MCL algorithm for disambiguation



Single classifier

Environment Partitioning in Recognition Tasks

Outline

- Introduction
 - Localization and vision
 - Initial approach
 - Partitioning approach
- Method
 - Partitioning
 - Localization in each partition
 - Localization in the whole domain
- 3 Experiments
- 4 Conclusions

Conclusions

Visual localization approach

- Scalability
- Unsupervised IT-based partitioning
- Fast image recognition, $\approx 0.1 \text{sec}$
- Suitable for corridor-like scenarios

Future work

Generalize to 2D scenarios

Large Scale Environment Partitioning in Mobile Robotics Recognition Tasks

Boyan Bonev, Miguel Cazorla

{boyan, miguel}@dccia.ua.es

Robot Vision Group
Department of Computer Science and Artificial Intelligence
University of Alicante

April 27th, 2007

